由VRay for SketchUp参数面板说开去(完整版)


强烈推荐顶渲论坛ma5老师的视频教程,我这里没讲材质,而他的材质部分刚好是免费,而且讲得非常深入浅出不回避难点http://www.toprender.com/bbs/forum.php?mod=viewthread&tid=2872&extra=page%3D1

 

但是115网盘不好用了,很郁闷,大家想学材质可以参考vray for su的官方教程:

http://pan.baidu.com/share/link?shareid=248848&uk=2869211135

另 外发现本教程已经被无责任搬运到很多文库、论坛,版权声明纯属笑话哈哈哈。生在我大瓷器国,知识产权不被重视这也是必然的,再加上本人也是各种盗版教程的 受益者。。但是你们转载也得注明个出处吧。。。所以我决定还是署个名吧,这样看到教程的人至少知道遇到了问题该找谁反馈。

弱弱的版权声明,本帖内容为本人学习总结,原创,欢迎分享,禁止无责任搬运,转载请注明出处。

 

推荐SU8+V-ray+V-ray+材质包+常用插件百度网盘下载链接:

http://pan.baidu.com/share/link?shareid=3991977947&uk=2869211135

 

 

请把软件安装在英文路径下,否则Vray无法启动。

废 话写在前面:二年级的时候曾经写过一篇关于一年级寒假墨线作业的帖子,目的无非是让低年级的同学少花些时间纠结,少走一些弯路,多些时间好好画图。当然不 是我想剥夺你们自学的机会,自学是很好,但是我接下来要说的东西,真的没必要自己瞎折腾,费时间。我从三年级开始接触机图到现在整整两年的时间,基本一直 是自学软件,过程中很是自得其乐,但是时间成本是很高的,效率也很低下,而且一直苦于当我被软件虐的时候,身边几乎没有人可以求助,万幸有张可天同学,精 通所有软件,且拥有所有软件的安装包,设计还这么给力,每次向他请教,都能学到东西。哈哈,良师益友,良师益友。

一直以来,就想写篇关于 vray for sketchup的参数教程,因为这两个软件大概是目前最普及的渲染组合了,大家很关心怎么用好这个组合。而且我自己在与软件斗争的过程中,也有些心得体 会,分享一下,也算是对自己学习的总结。另外一个原因就是,针对建筑系学生的渲染教程并不多,我试试能不能做点贡献。

另外要作一个声明:就 是关于渲染的定位问题,表达,只是工具,设计本身才是王道,一个完善的设计,就算skp直接导图,都会有非常好的效果,烂胚子再怎么渲也不会起死回生。当 然如果你有能力,在方案的基础上利用渲染,把空间的感受表达好,这就是锦上添花的事情了,或者你方案的核心想法就关乎光影,那渲染就会变得更为重要起来。

大家不要被讲软件的帖子误导了,把精力投入到软件上,相反,我这篇帖子的目的就是希望大家在这上面少花点时间。

 接下来进入正题:

这就是vray for sketchup的工具栏了,咱们的教程从“O”这个按钮开始。

“O”,即Options(选项),点击打开vray参数选项面板:(我习惯使用的是英文版,因为好的教程都是英文的,学起来有个对应,方便些,但是为了大家方便,我就搞双语教学啦。)

我们一个一个的来看:

一、参数读取选项

点Load,会弹出以下窗口:

这些参数预设还是有点用的:

A. 通常来讲,如果你不懂vray,选择了high或very high级别的参数,且场景中没有你自己添加的灯,又不是在室内的话,就能得到一个俗称“傻瓜渲”的效果,基本和skp中所见一致,清晰程度还是有保证的。

B. 第二个用处是你在学习vray参数的过程中,可以看看这些不同精度参数的区别在哪里,从而理解怎么调叫提高参数,怎么调叫降低参数,呵呵。

C. 或者你已经熟悉了vray,当你想渲正图的时候,直接读取一个very high,然后在这个基础上改参数,还是很方便的。

存取参数的功能还会有其他方便的用途,比如在使用发光贴图作为首次引擎,使用发光样本文件进行“渲小图,出大图“的时候,用这个切换参数会很方便。“渲小图出大图”放后面讲。

二、全局开关

从 这里开始,我要开始发散的讲了,帖子的标题叫由参数面板说开去嘛,我不会只讲软件,vray参数详解网上早有了,但是能不能理解每个参数,并且用好,就是 另外一回事情了。第一个值得思考的问题,我们为什么能看到身边东西、外面的世界?大家肯定懂得:首先,有光,然后物体会反射光,这些光被眼睛捕捉到,在脑 中形成了视觉的形象。那么继续思考,白天的光源只有太阳,那么不能被太阳直射到的地方的光是怎么来的呢?为什么背阴的房间也是亮的呢?因为光能够被反射, 环境中的万物都在反射光线,并且通常是由一点散射至四面八方的漫反射,大地,天空,建筑,树,车,人等等。由于这样的反射,把太阳这个主光源的光,分散到 了世界的各个角落,整个世界都是亮的,每个角落,只要他不是封闭的,或多或少都能被漫射光间接地照亮。

举个例子,一辆晴天场景下的汽车是如何被照亮的呢?他首先受到太阳这个直接光源的照射,同时受到周围环境各种反射光的照射,因此他的背光部分也不会是全黑的,影子也不会是全黑的,都会受到周围环境间接地照明,而且这些间接照明的光源,归根结底还是太阳。

而 GI(Global Illumination即全局照明)这一概念的含义就是:为了使渲染的光线效果更为真实,在渲染时不仅考虑直接从光源发出的光线(direct illumination即直接照明,阳光,灯都属于直接照明),而且考虑这些光线在被场景中的各种表面反射后对场景的照明(indirect illumination即间接照明,不发光物体的镜面反射光,漫反射光都属于间接照明)。

理论上,全局照明(GI)=直接照明+间接照明,但是CG业内往往把GI和间接照明混为一谈,因为全局照明技术的革命性因素就是间接照明,没有间接照明,就谈不上GI。

Vray在全局照明(GI)这一点上,是很不错的,这也是它的精髓所在。

材质控制组

反射/折射

反射/折射, 控制是否渲染反射/折射效果,理论上来说,如果物体不能反射了,也就看不到任何物体了,但是当不勾选这个选项的时候,我们仍然能看到渲染的结果,所以可以 知道漫反射还在,GI也还在。其实在这里,“反射”指的是狭义的反射,即镜面反射效果,对vray来说就是vray材质的反射层。因此,当把这个选项的对 勾去掉后,场景全局的材质的反射层,折射层就不起作用了。

上 图左右唯一的区别就是这个参数的变化,可以看到除了大方体的镜面反射效果外,其他部位的着色没有任何区别,光影也没有任何区别,这说明了一个问 题,vray在计算反射效果时,并没有根据表面的光滑程度不同来改变反射光的强度,说白了通过反射层添加的“反射”仅仅是一个视觉效果而已,,材质开启了 反射,就能看到他所反射的像,但是反光的多少毫无变化,我管它叫“假反射”。通过常识也能知道,反射光量不随表面光滑程度变化显然是不对的,要想达到真实 的效果,就要去间接照明卷展栏,把反射焦散这个选项打开,具体内容,等到间接照明那一节会进一步说明。

左 图的反射是“假反射”,仅有虚像的图案而已,光线并没有得到相应的反射。可以看到右图由于开启了反射焦散,小绿盒子的背光面被镜面的反射光正确的照亮了。 这个细腻而真实的效果,当你在渲染玻璃幕墙的特写,或室内庭院的小透时,可能会用得到。平时是默认关闭的,对大效果图,鸟瞰图,意义不大,没有必要开。

最大深度

指 的是在计算反射/折射效果时,光线的反弹次数,数值越高,反弹次数越多(对反射来说),或折射次数越多(对折射来说),越高越趋近真实,但是其实仅仅影响 的是“假反射”的效果,并不影响间接照明的反弹次数和真实程度,也就是说,这个参数的高低不影响照明的反弹次数和真实程度,只影响镜面反射或是折射效果所 看到的虚像的反射次数,进而影响其真实程度,举个例子,如图,我建立了一个场景,这个场景中间是一个红盒子,两边对立两个平面镜,如果是现实中的话,我们 应该看见无数红盒子的虚像,“盗梦空间”都看过吧。但是在vray中是没法也没有必要进行无数次反弹的计算的(我也说不准,如有误欢迎指正)。那么我向一 面镜子里看过去,会看见什么呢?

结 果很明显,这里控制的是计算反射虚像时,光线追踪的次数,超过这个反弹次数,计算即停止,弹一次,一个虚像,弹五次,五个虚像,以此类推。而且可以看到, 反射次数的增加,丝毫没有影响光照效果,即所谓“假反射”,反射效果只是张画儿而已。一般来说,测试时开1、2正图开5,足够了。

最大透明级别透明终止阈值,这两个用默认值就好了,除非要给玻璃制品特写,否则不用调高,建筑学基本不用改这个数。

贴图,这个钩去掉了,材质贴图就不会被渲染,只会渲染单色表面,也有人因为误操作取消了这项一直渲不出来纹理的。没有特殊需求,一般勾选。

贴图过滤,一般来讲,渲染时会对贴图纹理进行些许的抗锯齿处理,对质量高的贴图来说,钩不钩选真没什么区别。一般勾选。

模糊效果,全局模糊总开关,取消掉的话,就不能渲染模糊反射和模糊玻璃,一般咱们测试渲染的话,往往目的就是为了看模糊玻璃或是模糊反射的效果,所以对咱们来说,测试还是正图都要打开。

覆盖材质,特别好用的一个功能,使用它可以把全场景用单一颜色的漫反射材质覆盖,一般用于场景布光效果的快速测试。建筑学上一般可以利用这个功能快速渲染出白模型的效果,覆盖颜色一般为180到220左右的灰色,即RGB均为同一值,如R:210,G:210,B:210

切 忌使用灰度值为255的纯白色,因为颜色的灰度值会影响反弹光线的强度,也就是影响全局照明,纯白物体意味着最强烈的反射,在自然界中也是没有这样的情 况,如果覆盖了纯白材质,场景会不真实的过亮,成图也必然会曝光过度,达不到我们测试布光的目的。建模时不使用纯白颜色这一原则在大多数情况下都适用,通 常为了防止材质过曝。在实际操作中,Sketch中的白色材质都是95%白色。

间接照明控制组

不渲染最终图像,勾选后,Vray在计算过发光样本后就会停止,不进行图像采样器的计算,这个功能在“渲小图出大图”时尤其有用,通常不勾选。具体使用方法会在后面讲解。

光线追踪控制组

二级光线偏移,这个值控制反弹光的偏移值,值越大场景漫射光越柔和,为零时图面光线会很硬朗,就保留默认的0.001吧,网上说这个值有防止重面的功能,亲测没有明显的效果。

渲染控制组

批处理渲染,渲动画时必开,平时无所谓。

低线程优先, 若勾选,在进行渲染计算时,同时还可以进行其他的操作,比如看看图,做做PS什么的,渲染速度会受影响。若不勾选,渲染时就会把电脑的机能吃尽,渲染速度 会变快,但是做什么都会特别卡,对咱们来说,还是勾选吧,这样在调整时,拖动窗口,关闭窗口等等操作不会很卡。机器好的话还可以做点别的。如果一直不进行 其他操作,渲染速度勾不勾选差不了太多。亲测有效。

显示进程窗口,就是这个窗口,勾选显示

不勾选,不显示

灯光控制组

这个组的全局开关,理论上能控制全局的vray灯光,但是我用的这版本,绝对有BUG,测试过程中发现,光选项,仅能控制默认灯光的开闭,并不能控制全局的vray灯光,而这本应是默认灯光选项的功能。。。而隐藏灯光亦不能影响所谓隐藏灯光,需要隐藏灯光的时候,仅需勾选灯光的“不可见”选项即可,和这个总开关毫无瓜葛。因此我决定这个控制组略过,一般来说,灯光,勾选。隐藏灯光,根据是否需要隐藏灯勾选,感觉灯光的不可见命令完全可以满足这一需要。默认灯光, 一般不勾选,默认灯光是一个与vray阴影方向一致的平行光灯,如果不关闭,在你布光的过程中会一直形成干扰,在Vray for rhino中,是造成重影的罪魁祸首。但是在渲染立面图时,由于不能使用物理相机,因此就不能使用天空贴图,投影只能用默认相机解决,此时要勾选打开。阴影,除非有特殊需要不渲阴影,否则常开。仅显示GI,一般不勾选,但是我建议勾选后渲染一个场景,就能直观的理解到什么叫间接照明光。在这里GI(全局照明)和间接照明说的是一个东西。

Gamma校正控制组

Gamma 是一个略为专业的概念,我不太懂,对建筑学专业来说也不需要太懂,但是我知道的是,一般渲染,保持这个默认值即可。当你需要把渲染成果输出为32位浮点亮 度模式,如*.exr格式,以便后期进行CG编辑的话,则需要以sRGB颜色空间为基础进行工作,此时同时勾选,校正RGB校正LDR纹理可以完成线性颜色空间到sRGB空间的转化,勾选后不用进行其他调整,sRGB空间的输出结果会和不勾选时RGB空间的结果相仿。如果你看不懂,无所谓,请略过。如果你习惯于使用32位高动态格式,你一定知道我在说什么。

三、系统

这 个卷展栏里的参数,都是为了优化渲染策略而准备的,它们对渲染速度的贡献可以用一条曲线来粗略的表示:两边低中间高,横轴表示参数高低,纵轴表示渲染速 度,这条曲线肯定不精确,但是可以看到大的趋势:过低或过高的设置都不能达到最快的渲染速度,合适的设置会使速度达到峰值,但是这个峰值又非常难以把握, 因为每个场景的最佳设置都会不同,找到峰值的唯一办法是实测渲染,所以对咱们来说,所谓最佳策略就是浮云,从我的实际经验来说,默认值问题不大,修改参数 进行对比试验也没觉出有多大差别,这里只是讲一下各参数的意义,其实在系统卷展栏,鼠标停留在参数名称上,会弹出官方解释,英语和计算机好的可以自己看。

比如:最大树深度

翻译过来是这样:最大树深度,更大的数值会允许vray占用更多的内存,同时渲染速度会相应提高——直到某个特定点。超过这个特定点的参数(根据场景不同,数值亦会不同),会使渲染变慢。小的数值会使BSP树占用更小的内存,但是渲染会更慢。

我不懂什么是BSP树,反正每次这个值默认60,略保守,我每次都改成90,就是提高150%的心理吧,实际对速度影响,谁也不知道,因为谁也不会去测,难道你会把一张正图渲两遍吗?貌似不会。但是根据网上达人的实测,我可以提供一组数据给大家,

同样场景

        最大树深度30,渲染时间47分45.1秒

        最大树深度60,渲染时间22分14.6秒

        最大树深度90,渲染时间21分33.3秒

可以看到,默认值60挺好的,每次用90也没有坏处。

后面的最小叶片(Min Leaf),默认值0,面/级别(Face/Level)默认值2,一般都是留着默认值不动的,这个内存限制(Mem Limit),是这样的,默认值400,就是渲染时,光线追踪部分最多占400M内存,你有两条内存的话,每条内存最多就占200M,根据你的机能改吧, 我的台式是两条2G,所以,每次这个参数都设1200,速度上,只要不是数值过小,都差不太多。区域划分指的是,渲染时跑来跑去那个小块儿的大小,过小会 引起内存频繁读写,过大会造成卡死,默认挺好,大家也都习惯,就48×48像素挺好。倒序勾选的话,小块儿会反着跑,没什么区别,反正图又不分先来后到。

分布渲染,是指用多台电脑渲一张图,速度是线性叠加的,多人合作电脑多的要死时可以一试,特别是笔记本电脑都有无线网卡时,方法请自行百度,网上有很不错的教程,我没操作过,因此不瞎讲。

四、相机参数面板

相机,终于又到了重头戏时间,这个面板是如此的重要,发散的知识也很多,我们开始吧。

默认相机面板:

这 个默认相机的空间位置是和sketchup中的相机永远一致的,skp软件一直有一个弱点,就是我们不能操作摄像机的位置,只能通过视觉上看到的场景来大 致估计相机的空间位置,这虽然在很多情况下可以忍,但还是不够精确,没辙,忍忍吧。默认相机在什么情况下使用呢?对于建筑学同学来说,一般有如下情况:

A. 渲染人工光源的室内场景,如剧场室内。(选择默认相机的原因,不涉及太阳光)

B. 渲染小体块分析图或家具设计等等,总之是小东西,人工打光。(选择默认相机的原因,不使用太阳光)

C. 渲染夜景。(原因同上)

D.使用HDR环境贴图作为光源(原因仍是不使用太阳光,这个不一定,有的HDR质量较高,阳光很充足,使用默认相机可能会过曝)

E. 渲染鸟瞰,但是想获得手工模型感。(选择默认相机的原因,不使用太阳光,人工光会改变模型的尺度感)

F. 渲染立面图。(选择默认相机的原因,物理相机无法看到平行投影的视角,因为光线无法聚焦,而默认相机可以,所见即所得。)

总结来说,只要不使用Vray阳光系统,默认相机都能够比较好的完成任务,而且能解决轴测图,立面图的问题。这里的人工光指的是,Vray片灯,Vray点状灯(泛光灯)和Vray环境灯(GI灯)。

相机类型下拉菜单里还有很多种相机,会产生各种有趣的结果,如果你理解这些类型的相机,且做图有需要的话,可以尽管使用,通常意义上的效果图是用不到它们的。

覆盖视野,勾选的话,渲染相机的视野和skp中的视野不一致,通常不勾选,因为所见即所得本来是一件好事,但是在渲染大视角画面时,skp本身的预览效果比较差,通过勾选这个参数可以实现广角画面的渲染。

 

物理相机:讲物理相机之前,必须先讲怎么加载vray阳光:

想要渲染阳光,就要加载Vray内置的物理天空贴图作为光环境。点开环境卷展栏:

点击GI后面那个小m按钮,打开贴图控制面板:

点击None下拉菜单,加载Sky

点击应用(Apply)

此时小m会变成大M,表示此时加载有贴图,当后面是大M时,这两个参数失效:

用同样的方法给背景栏(background)加载天空贴图。这里的M,即是map,map就是我们中文所说的“贴图”。和老韩学英语,来:“这是一张不错的的贴图。”“This is a pretty good map.”

这时如果使用默认相机对场景进行渲染,会因为阳光过强而曝光过度,俗称“曝成一坨shi”,想像你在大晴天里把一卷胶卷全部拉开会冲洗出什么样的结果吧,something like that。

当使用vray物理天空贴图时时必须使用物理相机。

物理相机参数面板如下:

关于这个面板,喜欢摄影的同学会有更深的理解,我没有过摄影的经历,没有操作相机的经历,为了理解这个面板曾特意借来一本摄影教材,所以关于这些参数的关系还是可以略微谈谈,如有不对请指教,因为我实在没有什么经验,都是纸上谈兵。

相机类型一般就是用默认的这个了。

覆盖焦距,一般不勾,这样和skp窗口看到的一致,如果你对物理相机有理解,请勾选后按自己的喜好设置。但是小心对焦不准,但其实你不开景深计算的话,这参数没用。

以上灰字部分为谬误,参照54楼秋朦的提醒,我发现这里我理解错的,这个覆盖焦距还是很有用的,通过它可以设置镜头的焦距类型,长焦镜头,视野小,透视小,短头广角,透视变形明显

快门 ,快门即是指相机拍摄景物时,快门一开一闭所持续的时间,也就是胶片接受曝光的时间,快门打开时间越长,照片就越亮。这里的数值是指多少分之一秒,即 300是快门打开1/300秒,150是指1/150秒,后者就比前者多曝光一倍时间,进光量也多一倍,照片就会更加亮,摄影上叫高一挡曝光(高一个 stop,stop是“挡”)。常见快门档位有1、1/2、1/4、1/8、1/15、1/30、1/60、1/125、1/250、1/500,可以看 到基本上前者曝光时间是后者的一倍。

覆盖胶片宽度,这个参数一般不勾,胶片宽度由视角(field-of-view)和焦距(Focal Length)共同决定(不知道大家好不好理解,不理解也无所谓)。勾选的话就可以自己指定胶片宽度,理解这个参数的同学请勾选后按自己的喜好设置。

变焦,其实就是拉近,可以理解为放大多少倍。

光圈, 和快门同样重要的一个物理相机参数,表达光圈的大小我们使用F值,对于光圈你可以理解为镜头内用于光线通过的孔的直径,但是不同焦距的镜头,要保证进光量 相同,孔的直径大小也会不一样,所以为了保证进光量的统一,使用一个公式:光圈F值=镜头的焦距/镜头光圈的直径。这样来把不同焦距的镜头的进光量等价, 统一。由公式可以很容易的看出,孔越大,进光越多,F值越小,常见的F值 有:f1.0,f1.4,f2.0,f2.8,f4.0,f5.6,f8.0,f11,f16,f22,f32,f44,f64,前者的光孔面积是后者的 一倍,进光多一倍,曝光高一挡。

因此,配合快门,在同一曝光下,可以有多种不同的光圈快门组合。既然亮度一样,那么这么多排列组合有什么用 呢?对于我们建筑学的渲染来说,效果图属于静帧渲染的范畴,被摄主体是建筑,镜头不动,被摄主体也不动,这时候光圈快门还不那么重要。但是如果被摄主体是 高度运动中的物体,那么长时间曝光下,会拍摄到大量的运动模糊,这时候就需要用高速快门,比如1/1000秒吧,快速的拍摄物体瞬间的形象,俗称“抓 拍”,此时光圈F值就要相应的变化,以使曝光合适。再比如使用长曝光技巧拍摄天空,快门打开时间很长,光圈就要非常小,否则就会过曝。

感光度, 即胶片对光的敏感程度,在相同的光圈快门下,感光度提高一倍,画面曝光提高一挡,相当于进光量提高一倍,因此高的ISO值可以允许在更暗的环境下使用相同 的快门,拍摄到曝光合适的照片,比如你手持拍摄室内景物,此时没有三脚架允许你长时间曝光,适当提高ISO即可解决这个问题。常见ISO值有 100,200,400,800,1600。.

Distortion和Lens shift一般还是不调了吧。

白平衡,当你对渲染结果不满意,觉得它偏向某一颜色,就可以在这里设置这一颜色,来在新的结果中去掉这一颜色倾向,比如你嫌结果偏蓝,就把这里设成蓝,试试就知道了,不推荐使用这一功能,因为后期去PS里会比这控制的精确得多。

曝光计算,必须勾选,如果不勾选,就会按照默认相机的感光度进行计算,什么光圈,快门,ISO统统失效,又要曝成一坨shi了。

镜头渐晕,就是真实照片四角偏暗的暗角,不推荐勾选,后期去PS里会比这控制的精确得多。虽然PS里是二维操作吧,但是毕竟这个效果不可逆,还是别勾选了。

相机卷展栏里还有景深和运动模糊,这里就先不讲了,建筑学效果图用不到,景深一般用来给小物体特写时表现空间层次,建筑上不是很必要。运动模糊在做动画时有用,想用Vray做建筑动画没有工作站是有点难的,学生没这条件,这里先不讨论了。

而 且更重要的一点是,这两个模糊效果和镜头渐晕一样,不可逆,前期的RAW素材保持清晰,后期加模糊所见即所得,程度还可控,后期来加才是正确的思路,在 CG行业内也是如此。渲染所提供的,应该是一份清晰的底图。技术上,景深模糊可以通过Z-Depth通道来解决,运动模糊可以通过After Effect来解决,景深通道的使用会在通道那一章讲解。

 

五、输出参数面板

这个面板很简单,大家肯定会用,我想通过这个章节发散点别的,面向二年级同学,老鸟请跳向下一章。

覆盖视口, 一般是要勾选的,因为不勾的话会按显示器分辨率渲染,一般这个精度不够出图的需要(显示器满屏分辨率一般宽屏1280*800,经典方屏 1024*768,你们懂的),但不勾的话,渲染出来的图像长宽比例和skp里看到的一致,所见即所得,可能我说的不清楚,试一下就知道了。

然后有一系列4:3的预设值,只是方便,也基本上是常见的数码产品的屏幕分辨率。

获取当前视口,点了以后立刻渲染的话,相当于你没有勾选覆盖视口,一样一样的效果,所见即所得。这按钮还蛮方便的。通常配合图像宽高比后面那个L按钮使用。

请注意,每个人的skp的工具栏摆放都不同,这就影响了视口的比例!比如你有同一个skp文件,并且保存了视角书签,但是去不同的电脑上渲染渲出来的视野范围可能会不同,很多同学喜欢用skp取景,但又发愁渲染结果和skp看到的不一致,方法就是要点获取当前视口。

举个例子:

比如我要渲染一张Sang哥的毕业照(什么,你不知道Sang哥是谁?那每次开skp被删掉的那个人太冤了),屏幕取景我就调成这个样子,在点击获取当前视口之后,输出长宽数据会立刻显示在输出面板:

渲出来自然就是这么一张图:

但是Sang哥表示你这个分辨率太小才300多,这要是洗相片出来才一寸这么大,不行不行,那肿木办。(高品质的相片的Dpi是300,意味着300X300像素的图是一英寸见方,但其实一般Dpi不那么高)

这时候点击图像宽高比后面那个L,lock锁定比例

这时候宽度输4000并回车,高度按宽高比自动更新,这时候图片比例,内容都没变,只是分辨率提高了,4000这么高的分辨率我瞎输入的,几乎可以出一张一号图。

图像宽高比和获取视口这个流程就讲完了,后面的像素宽高比有没有用呢?有,但我们一般不改动这个值。

发散知识时间

像素宽高比(Pixel Aspect)是1,就意味着每一个像素都是正方形,术语叫square pixel,即方形像素,最为常见,电脑屏幕,打印,电子产品,数字电视,都是用正方形像素,但是另有一种特别常见的媒介不是方形像素,那就是家家都有的 电视机。中国使用的电视机屏幕是PAL制,PAL制的分辨率是720x 576,但是电视屏幕画面比例是4:3,你自己可以算算,720x 576的点阵可不是4:3的关系哟,横向稍微少了一些(少了48个像素),那为什么我们看到的是满屏画面呢?因为每一个像素都是胖子,像素宽高比为 16:15,约等于1.07。.

也就是说,当你想用vray渲染满铺电视屏幕的画面时,请设置分辨率720x 576,像素宽高比1.07。做视频更是如此,在电脑上播,用投影播,在优酷上发布,就要1:1方形像素,1024X768(传统台式屏幕);在电视上 播,就要1.07,就要720x 576,就要每秒25帧。不知道这些,视频就会有令人不快的黑边,细节决定成败。

另外一个想说的是画图时 Dpi设置多少,这个大家会有不同意见,因人而异吧,有时也会因图而异。Dpi是Dots Per Inch的缩写,即每英寸打印点数,又称打印分辨率,电脑屏幕的DPI一般是72(PS的默认选项也是这个),最高不超过96,但是咱们出图的dpi肯定 要超过100,这是底线了。

我想通过例子来说明,比如我们要画一张一号图,横图,尺寸841X594mm,首先,要去Photoshop里面新建一张纸:

建好之后看左下角

150dpi 的情况下,一号图长边4967像素,短边3508像素,这时候你就明确了,我想渲一张占图纸3/4版面的大效果图,分辨率就是3700X2600左右,在 输出的时候直接渲染这么大的图,放到PS里不用ctrl+T调整大小(自由变换会损失原有数据精度,是原图的重新采样)。

 

同 样一张渲染图,放到DPI越大的纸里,就会显得越小,因为像素数没变,像素密度增加了。那么打印机究竟能打印到什么精度呢?其实打印机的dpi可以非常 高,(可以上千)但是那么高的油墨密度,如果不是打在特种纸上,会使油墨过饱和,连成一片,反而损失打印精度。通常来讲,如果是相片,出版物,dpi会要 求300,比如UA竞赛的图纸由于出版要求也是300,但是对于我们日常评图来说,由于是远观,看大效果,Dpi绝对不用像杂志那么高,只要超过 120dpi,肉眼就很难看出清晰度的差别了,所以,我喜欢150dpi是给它一个余量,根本不用200dpi,300dpi,更清晰都是无用功,打印不 出来的。而且dpi设置小一些,图像体积成几何级缩小,画图效率也会很高,渲染图也不用渲那么大了。

继续聊输出面板:

Render output(渲染输出)

勾 选保存文件的话,会让你选择一个路径,渲染好后会自动保存到那个位置,请注意是英文路径兼容性会好一点,这都不是问题,很唯美的功能有木有???!!!! 方便大家啊,空调睡眠功能啊有木有???!!!!半夜挂机不用怕断电啊,有木有!!!但是尼玛为什么我渲完一张图你这功能不自动消失呢?尼玛为什么我渲张 新图你不提示我改名字就蔫不出溜的把上一张图覆盖掉了呢?纱布么这不是?蠢成马了都,怎么和你玩?尼玛我好不容易挂了一晚上渲出来的图,巴巴的等你渲完, 换个角度想渲下一张,刚一点渲染肠子就悔青了有木有!!!!!刚才的图木有剪切走木有保存呢还!!!!老子不就是熬了个夜脑子不清醒吗????好,流着泪 等你第二个角度渲完,赶紧回去补第一张视角,刚一点渲染肠子就悔青了有木有!!!!!第二张图又被覆盖掉了!!!!!我承认我熬完夜纱布了,但尼玛就不知 道提示我一下吗?windows自古就有的功能,宇宙都通用的覆盖提醒,尼玛就不知道借鉴一下????谁编的程???!!谁编的程!!!!!!!!坑爹呢 这不是??????!!!!!!

冷静,我们来看下一章:

六、环境参数面板

又一个重要的面板,环境面板主要用于提供全局照明的光环境还有反射环境,之前已经讲过怎么通过这里链接阳光系统,现在我们来详细的挖掘一下这个面板的功能。

天光,翻译成天光似乎不够全面,当后面是小m,即没有贴图的时候,强度及颜色由这个面板这里控制,颜色为白色,倍增值为1时,不使用物理相机并且关闭默认灯光,将得到合适的曝光,此时的光环境等价于如下的情形,在假设有地面的情况下:

所谓天光,可以理解为空间中一个球形光源,洒下均匀的光线,就像无影灯一样,在这样的光环境里,可以想象,如果渲染一个球体,将毫无立体感:

 

左侧是模型,右侧为渲染,光环境为只开天光,关闭默认灯光,可以看到右侧球体的每一点都受到同样强度的光照,着色毫无变化,毫无立体感,这个渲染实验很简单,却能引出一些话题:

模 型看着挺好的,渲出来却很“平”,没有立体感,看着还没有模型的感觉好,渲了还不如不渲,难道是软件不给力?怎么才能渲出好的视觉效果?再延伸一步:我明 明导入了玻璃材质,我明明导入了金属材质,怎么看起来一点都不亮?看起来一点都不像金属、玻璃?这都是大家在做设计时非常关心的问题,也是我们最常遇到的 难题。通过以上这个球体的渲染的极端例子,大家应该就能明白光的重要,一个立体的的东西,我们总是觉得它理所应当看起来就是立体的,但其实光环境起到了决 定性的作用,没有受光部,没有暗部,没有黑白灰,就没有形体的塑造,我在学素描时没能理解透彻的道理在渲染时突然有了很深的感受,当你在作写生画时,如果 只是单纯的抄明暗调子,画的再仔细也是二维的思维方式。如果你能够观察并理解场景的光源分布,观察场景的反射环境,你的画一定是会生动,准确,富有灵性 的。回到效果图的创作,也是一样在,CG创作中,有意识的控制场景的光环境分布,设计好场景的反射环境,向自然学习,多观察真实世界的光的作用方式,多利 用照片作参考图,多思考你想要什么效果,现实中如何达到这个效果,你的CG作品一定会大有进步。

比如刚才那个悲催球:我给自己定下一个课题,如何生动的表现一个球?下面是我的解答:球的模型都一样,还是skp里那种有棱有角的球…

      看起来是个球了吧。分析:这幅图通过球体表面扭曲的反射,成功的说服了观者的大脑:“你好,我是一个球。”

      那么由此也引出了接下来要讲解的问题,上图的背景图片是怎么插入的呢?使用球天素材制作反射环境该如何设置?请跟我来:

和设置天空光一样,点击这个小m

进去后选择下拉菜单:位图(Bitmap)

然后是导入三部曲:

第三步,关于球状还是盒状,球状的hdri是大广角的图(360度广角),盒状hdri是方盒子的展开图

关 于hdri的原理,请参照Photoshop帮助文件,那里讲的很不错,更高端的用法,请自行百度,球天素材需要专业的采集设备,因此有一些公司专门制作 这种素材的dvd,比较有名的是Dosch和SACHFORM,去verycd检索这两个公司,(关键字: Dosch.HDRI.SKIE还有SACHFORM HDRIbase)就能搜索到这些球天资源了,另外他们公司的主页还提供免费的样本下载,非常高清,值得收藏。

有了hdri,就有了丰富的反射环境,这对于玻璃,金属物体的表现大有帮助。但是我得说,在做效果图时,一张合适的hdri是可遇不可求的,大多数时候,反射环境还得用真实模型来创建。

 

在天光通道添加hdri后,用同样的操作在背景通道添加同一张图片,这样在渲染的时候,就能直观的看到周边的环境,同时场景中的反射材质也开始反射出环境图像。

背景通道就是一张360度的图片,它不影响亮度,但影响物体的反射。

在渲染结果出来后,保存成png,背景会被自动抠掉。保存成jpg则会保留背景。因为hdri的分辨率一般达不到出图的要求,通常我们会保存成png并使用新的天空,但是可以存一张jpg作为后期PS的参考图。

但 是要注意的是,使用hdri贴图,光线分布会非常均匀,近似阴天的效果,因为在采集hdri图片时,很少有能够把阳光采集的足够亮的。也就是说,极少有能 够照出投影的hdri素材。因此不管hdri环境看起来是多么晴朗,我们的模型永远是像被无影灯照着,阴沉着脸,毫无生气,相当于一开始所讲的默认天光效 果。这时候就要使用vray泛光灯,来做主光源,模拟太阳光。还是刚才那个球的场景。如果只是在天光和背景通道加入了hdri贴图,渲染效果如下:可以看 到虽然天上挂着个大太阳,但是我们的主角还是非常不精神。

这时候我们以这张图作为参考图,凭借着建筑人基本的空间想象力,在太阳相应的位置,添加一盏vray泛光灯,俗称vray球灯。就是这货:

      反复调整位置,使灯和太阳位置基本重合。

      下图是从skp窗口里看:

      从渲染视角看:

灯参数设置如下:

最后的渲染效果:

细心的同学可能注意到了vray无限平面,这是个好东西,可以看到场景里我用无限平面画了一个小矩形,在渲染中形成了无限扩大的地面效果,若是真的在skp里画地面的话,一是画不出无限大的面,二是模型量巨大,这个好东西的按钮在这里:

以 上帝视角看刚才的场景,我希望你看一看线性衰减的光照范围,理解它和现实的差距有两点:1太阳不会在地球表面上感受到这么明显的衰减,但是在图面所及的尺 度内(小球周围),它和太阳的光感近似。2现实中的灯不会以这种方式衰减,最起码是反转(inverse),真实的运算公式是反转正方形(inverse square),所以当使用vray泛光灯模拟路灯,台灯时,请不要使用线性衰减。总结:对于阳光,它衰减的太快,对于灯具,它衰减的太慢。

上文讲解了使用环境参数面板,使用vray泛光灯+vray默认相机,进行自然光模拟的基本思路,之前也简单讲解了vray阳光+物理相机,这个常用组合。关于阳光系统,有一个比较重要的细节需要补充,请看选择sky贴图后,右侧的参数选项:

图中圈红圈的的参数是个关键点,改成3或4后,阳光的阴影虚边会变大,更接近实际,其实参数4会比实际夸张一些,根据需要吧,别太追求虚边,现实中远景,鸟瞰图,根本看不到这种细节的,参数太高了就假了,尺度不对了。

 

七、图像采样器+间接照明采样器

好啦,下面进入vray的重头戏:间接照明采样器和图像采样器,这兄弟俩一个负责计算光,一个负责计算图像。一个是灯光师,一个是画师,理解它们的参数的实际意义,将使你对时间和质量的平衡进行一个有效的把握。

本段所有知识,来自于Gnomon workshop的Chris Nichols的视频教程,我只是进行了转述。

 

虽然在参数面板自上而下的顺序上,讲到了图像采样器,但我仍然想把间接照明采样器提到前面来说,因为这涉及到vray实际的计算顺序。

间接照明采样器,参数面板如图:

GI,我在第二章已经介绍过它的概念,在这个参数面板中,GI特指间接照明(而非全局照明),即取消勾选后,就不会计算间接光照,只显示直接光照,假想生活中所有的光线只反弹一次,渲染的结果可想而知会是如下左图这样:

间接照明关闭后,阴影部分得不到任何的环境光照射,会呈现死黑,地面和物体本身也因为没有环境光而显得暗淡。

发散思维时间

关闭GI可以渲染出黑白分明的效果,除了可以制作特殊风格的效果图以外,还有一个很不错的功能,这个是本人原创哦,就是用来进行视线分析,请看下面的案例:

这是我们3年级时所做禅修中心方案的地形,地处山区,景区核心部位有一大佛像,像高90余米,当时的方案选址在佛像南部,模型右侧的山后,就是这个山坳里,还连带南部的一部分平缓地区:

地形平面图如下:

当 时允许在蓝线框内任意选址,南北各有其特点,但是一个共同的要求是,和景区的佛像有视线关系,为了分析出场地内哪里能看到佛像,我在佛像半身标高处放置一 红色vray泛光灯,让它去照亮场地的skp模型,同时关闭GI反弹。就分析出了能够看到半身佛像的区域,最终用这样的办法辅助确定了方案的选址。

图为渲染结果:

图为视线能及佛像且在红线内的方案用地范围:

这个视线分析的例子很典型,用这种方法分析复杂地形的视线关系非常精确。

 

反射焦散和折射焦散已经在前文简单的介绍过,通常是反射焦散不勾选,折射焦散勾选,为什么呢?因为反射焦散效果微妙,容易被人忽略,而折射焦散往往很抢眼。

下图为典型的反射焦散的例子:

金 属圆环内圈形成了高亮的聚光,很抢眼,但是我更希望大家关注的是外圈那层细腻的光影,高反射度的物体,周边必然会引起较明显光影的变化,在实际设计中,有 一种反射焦散极为生动,下图为卒姆托瓦尔斯温泉浴场露天浴池的墙面,这种光影效果,我们在生活中习以为常,以致见怪不怪,但是对表达光影氛围却非常重要。

想要这种效果,必须依靠反射焦散命令,材质的反射度,光滑度调得再高,没有用,那里只管材质反射到什么东西,看起来是什么样子,是个视觉上的效果,和光能传递没有关系。

折射焦散在生活中给人的印象更为深刻,因为它往往表现为强烈的聚光,以下是生活中的折射焦散:

野外生存,冰透镜引火

在 vray中,我们可以为透明物体设置折射率,即IOR值,1为真空的折射率,光线穿过不发生偏移,水为1.33,玻璃由1.5~1.9不等,vray默认 1.55,这个折射率控制透过折射物体的表面能够看到什么,同材质反射,这也只是个视觉效果,并且,vray中的折射是白光折射,即从红光到紫光一视同 仁,一同折射,并不由波长不同而有所变化,不存在色散现象,举个例子就是说一束白光通过三棱镜,也不会有七色光的。在这一点上,maxwell就更胜一筹 了,它的渲染体系就是基于波长,所以它可以精确地渲染出真实的色散效果。

材质的折射只是图案而已,并不影响光能传递,但vray默认是勾选折射焦散的,可是想渲染折射焦散还要把默认不勾选的焦散卷展栏打开,真乱。

而且,而且,由于skp的先天不足,他不能形成真正连续光滑的曲面,这点和rhino是完全不同,所以想用skp+vray模拟现实中那种折射焦散基本可以说是不可能的,好在建筑学用不着太多这种技巧。工业设计和室内设计的同学肯定还得用rhino或3ds。

关于这两个焦散,我只能讲讲概念,因为建筑学上用的实在是不多,我自己也没有很多经验,只是希望读者能够通过这一点提示,找到一些表现的思路,具体案例和教程,网上其实很多的,可以具体问题,具体研究。

 

后期处理控制组

这 一组的最常用的功能,我认为是控制色溢,什么是色溢呢?我个人理解是这样的,在计算间接光照时,每一个反射面都看做是新的光源。举个例子,一块红色的板 子,为什么是红色的?因为它反射红光,吸收其他色光,那么从实质上来讲它此时就变成了一个红色的光源,尽管光很弱,但还是会体现出来,生活中的确是如此, 但是这个很弱的光有多弱?vray默认是有一个常数的,在这里就可以修改这个值对图面的影响力。如下图所示,这是我模拟我曾经遇到的一个场景,模型如下, 这样一个空间:

右侧是玻璃,下侧是绿色铺地,当时渲染时遇到一个问题,明明是绿地白墙,但是默认参数渲染出来整个场景绿的一塌糊涂,房顶全绿了,我知道的确绿色的地面反射了大量的绿光,但是实在超出了真实感的限度。如下:

当时毫无办法,后来知道是色溢,于是调整这个参数:

改为0.5后效果好了很多:

剩下的三个选项,对比度基数尽量别动,对比度就是调整对比度,每帧保存贴图没用过,难道是动画时有用?不知道。

首次引擎是用于计算首次间接光反弹的引擎,这里可选的有发光贴图,和确定性蒙特卡罗两种。你选择后,就会出现相应的卷展栏。

二次引擎是用于计算剩下的间接光反弹的引擎,这里常用的有确定性蒙特卡罗,灯光缓冲。

首次引擎和二次引擎里都有光子贴图,光子贴图引擎对光源有特殊要求,适合做动画,效果和运算效率很差,肯定不用。首次不是发光贴图,就是蒙特卡罗,妥妥的。二次引擎你还有第三个选择:关掉不开。

 

接下来是间接照明采样器里最重要的讲解了,各发光引擎参数意义。

先从参数最简单的确定性蒙特卡罗开始。参数面板如下:

当首次和二次引擎都使用确定性蒙特卡罗时,上图的两个参数都可以调整,当二次引擎不使用确定性蒙特卡罗时,二次反弹选项会变灰,不可使用。二次反弹决定了计算间接光照时,光线追踪的最大反弹次数,越大越真实啦。3次的默认值已经不错。

 

下面来引入vray的核心概念之一:细分

细分(Subdivision)在vray参数面板中非常多见,它的含义如下图所示:

这 张图来自于Chris Nichols的视频教程,让我们对他表示由衷的感谢,图中每一个大方块,也就是四分之一的图面,代表一个光源样本,数字代表细分那一栏设置的数值,小方 块是形象的表示“细分”分的有多“细”,大方块里的小块数量代表光线数量。你可以看到,细分这个参数是呈现平方关系的,比如说我的细分值是4,那么就是我 的每一个光样本,由16条散射光所搜索到的数值贡献而成,如下图:

图中有16条散射光线。散射光线和入射光线与物体表面相接触的地方,就是一个光样本。

如果细分设为8,则如下图:

图中有64条散射光线,即每个光样本由64个数值贡献而成。

以此类推,如果细分值设置为16,则如下图:

图中每个光样本由256个散射光线贡献而成。

更狠一点,细分32:

一共1024条散射光线。可以看到此时已经非常接近半球形了,意味着和真实效果会很接近。用确定性蒙特卡罗引擎,细分设置到32的话,基本可以达到完美的渲染效果。

但 是刚才只是探讨了一个光样本,渲染一幅图,要计算多少个光样本呢?对于确定性蒙特卡罗来说,每个像素,需要一个光样本,也就是说渲染一幅800X600的 小图,就要计算480000个光样本,若细分为16,每个样本要计算256条散射光,若二次反弹为3,则光线充足位置的光线还会进行3次反弹,由此可见计 算量之大。这也就是为什么使用确定性蒙特卡罗引擎会比较慢。但是这个引擎仍有其优化之处,它和发光贴图一样,都是基于镜头采样的,基于镜头采样说白了就是 看得见的我计算,看不见的我就不计算,它实际上是从镜头射出反向光线,进行散射,由散射光去查找环境中的光源,确定这个点受多强的光照,什么颜色的光照, 自己固有色又是什么,这样综合来确定这个点最终是什么颜色。由于确定性蒙特卡罗每个像素点的采样是各自独立的,所以用它渲染的图像会有颗粒的质感。

下面来看一个案例:

使用确定性蒙特卡罗作为单一引擎,不开抗锯齿功能,细分设为2,输出640X800,图面效果及渲染时间如下:

细分设为8,时间及效果如下:

细分设置为32,效果及时间如下:

对比一下细分8和细分32的局部细节:

可以看到右图表面的质感比左图要细腻得多,同样是颗粒感,右图的过渡比左图要平滑,杂色更少,当然以上两图如果开启了抗锯齿,效果都会提高不少。

 

确定性蒙特卡罗先讲到这里。它还有一些自己的特性,放后面说。

 

发光贴图引擎

刚才所讲的确定性蒙特卡罗引擎是每个像素采一个光样本,那么在它的“眼中”,一张图是2维的,计算量分布比较平均,我们可不可以把好钢用在刀刃上,把计算量全部用在细节上,其它的没有细节的东西一带而过呢?这个概念叫做优化计算,发光贴图引擎允许你这样做。

首先,它和确定性蒙特卡罗一样,都是基于镜头采样,也是看得见的计算,看不见的不计算。要明确一点,基于镜头采样只对建筑学表现图这种静帧渲染是好事,渲染技术更多的需要拿去做动画,基于镜头就会变成一个麻烦的事情了。

更优化的计算方式自然要求更复杂的参数设置,发光贴图参数面板如下:

这 里又有一个新的概念了,作用非常像细分,它叫“比率(Rate)”,比率允许你进行比细分更加大范围的样本精度控制,它不以一个像素作为划分基础,它允许 设置好多个个像素共用一个光样本(这叫不足采样under sampling),还允许在一个像素里“挤下”多个光样本(这被称为过度采样over sampling),图示如下:

仔细听哈,在这张图里,0那个方块的面积是一个像素,这是个8X8的棋盘格,上面一共有64个像素。

0 代表在这一个像素里,有一个光样本(这个情形和确定性蒙特卡罗等价),1,这个像素被分成了4份,代表在这一个像素里,挤了4个光样本;-1,代表每个像 素分到了1/4个光样本,就是4个像素共用一个样本;-2,代表每个像素只分得了16分之一个样本,16个像素共用一个光样本。

规律是什么呢,这个参数其实就是一个以4为底数的指数参数,4的0次方,是1,就是1像素1样本;4的1次方,1像素4样本。4的-2次方,1/16,1个像素1/16个样本,16个像素,一个样本。

所以呢,在最小样本处,我们一般填-4,-3这种值,最大样本处,正图我们一般填-1,0,测试时一般还是-3左右。

这个最大最小又是什么意思呢?

它的意思是对样本进行优化的采集,有细节的地方,使用最大的那个参数,没细节的地方,比如地面,使用最小的那个参数。

那什么是细节呢?

1就是图案复杂的地方(颜色突变多的地方,由颜色阈值控制)

2边边角角,表面转折大的地方(法线变化速度快的地方,由法线阈值控制)

3缝隙里(两表面距离近的地方,由距离阈值控制)。

那么这3个阈值有没有必要背,个人觉得不用,每次渲染的时候,通过这里读取就可以了,load一个基础参数,再去改其它的。

半球细分,默认值50,已经很高了,这里对应确定性蒙特卡罗的细分,50就是2500条散射光线,已经非常多了。

但是在渲染室内时,往往50还不够,房顶,背光的窗户上,容易有这样的斑,使用vray渲染的作品,最常见的瑕疵就是这种,我增加下对比度,会看得更清楚些:

针对这个问题,把半球细分提高到80,会有所缓解:

提高半球细分,会降低这种班,但是渲染时间是成平方极增加的。

想要更好地解决,就要把后面那个“样本”一同提高,样本提高到50:

样 本,其实是插补样本,发光贴图允许不足采样,那么就会有绝大多数的像素分不到一个完整的样本,那么这些得不到样本的像素的颜色就由周围的样本进行插值计算 得出,比如一个平整的表面,通常会是-3的采样精度,就是64个像素共用一个样本,如下图,一个亮点是一个样本,可以看到有大量的像素上没有样本,但是渲 染的结果却很平滑。

这就好像每个样本都和周围的样本去进行渐变过渡,这样来生成彼此们之间的光照数据,可以想象,用这种方法渲染出来的平整表面,肯定要比确定性蒙特卡罗要平滑干净的多,因为可供参考的样本大量减少,颜色的过渡由计算机用插值计算填补了。

那么这个默认值为20的插补样本设置越低,则在不足采样的地方颜色过渡越不平滑,比如如果设为1,则颜色过渡像鳞片般生硬:

但是如果设置的太高,则会把细节部分细腻的光影变化都覆盖掉。光线充足的话,默认20建议不要动。

显 示计算阶段,默认是勾选的,勾选的话,在帧缓存里会显示一遍遍的跑小方块的过程,每跑一编,就是计算了一个比率的采样级别,比如最小比率是-3,最大比率 是0,那么第一遍先计算-3,然后是-2,然后是-1,然后是0,逐渐增加精度,每遍的速度也会变慢,在这里会显示计算到了哪一步:

1 of 4,这就是说从-3,到0,第一遍跑-3,然后-2,-1,直到0跑完为止。现在图中正在跑-3。

 

显示样本,勾选的话,就不会出图,而是出一张样本分布图,帮助分析设置是否得当。比如还是这个案例,勾选显示样本:

可以看到在左侧方块的下部,样本非常密集,基本上每个像素都有样本,是0的比率,球的下部由于进入了距离阈值的范围,样本比周围平地要密集。

这里我把距离阈值增大,这个值越大,就会把越大的距离判定为“缝隙”,从而增加采样比率,距离阈值由0.1,调整为0.5,可以预见到,球底部的样本会增多。

细节对比图如下:

显示直接光照,默认没有勾选,好像新版的默认是勾选了,我的经验是只要首次引擎用发光贴图,第一个就要把它勾上,因为如果不显示直接光照,那么场景在渲染帧缓存窗口会非常黯淡,会影响你在前期调整光线时的判断。勾选的话,在调光时可以第一时间预览到画面的亮度。

由图可见,勾选显示直接光照后,在刚刚开始渲染时就能预见到结果是否亮度适中,在反复调整时非常方便。

 

现在我们可以对比一下,使用确定性蒙特卡罗细分32,和使用发光贴图,-3到0,细分50

可以看到远看效果,两者在高参数下可谓旗鼓相当,但是细看则各有各的优势和缺点,但是就渲染时间来说,发光贴图的优势就很大了,这得益于非常优化的样本分布配置,计算都给了细节,好钢用在了刀刃上。

 

接下来介绍二次反弹的常用引擎,前文稍稍提过,二次反弹的常用引擎有两个,一个是确定性蒙特卡罗,我们已经讲过,另外一个是灯光缓冲。

首 先来说一下二次反弹的意义,渲染软件追求模拟真实,首次反弹引擎的作用是把物体的边角,缝隙,颜色反差大的这些地方的光影变化都收集到,话句话说就是首次 引擎负责细部的光影。但是仅仅这样还不够真实,现实中光线的反弹次数是“无数次的”,二次引擎的作用就是去尽可能收集这些不断反弹的,不断衰减的光线对于 图面的贡献,来模拟真实。比如确定性蒙特卡罗就可以设定反弹次数,默认是3次,越高就越真实,当然越高计算量就越大。

使 用确定性蒙特卡罗,会得到非常精确细腻的二次反弹结果,但是计算效率较低,得到相近的效果时间花费较大。但是确定性蒙特卡罗引擎有一个显著的特点,就是对 内存的占用较小,它不像发光贴图,灯光缓冲这样,把发光样本全部积累在内存中,整张图计算完再进行调用,而是在出图时随时计算,每次只计算一小块,算完一 块,立刻释放内存,再计算下一块:这个引擎可能对于一些电脑配置不够高,但是模型又比较大的同学是个可选办法,有的模型渲染时会因为内存不足而崩溃,这时 候就可以尝试用确定性蒙特卡罗同时作为首次和二次引擎。

接下来介绍灯光缓冲引擎,灯光缓冲引擎是一个非常高效且易控制的二次引擎,面板如下:

之 所以高效,是因为它和发光贴图一样,是基于相机采样的,工作原理是:它从相机处发射出样本,均匀分布于整个图面,去收集它所反弹到的物体表面的颜色信息, 事实上这个引擎甚至没有控制反弹次数的参数,它只会让样本在空间中不断的反弹,直到其对图面的贡献可以忽略不计为止,但是在计算时间上却非常非常高效,几 乎可以认为是一个完美的二次引擎。但是由于它是基于相机采样的,就导致了离相机近的地方样本稠密,离相机远的地方样本稀疏,假设在离相机非常非常非常远的 地方,有一个点光源,这个引擎射出的样本,有可能打中这个光源,使其在图面上得到表现,更大的可能是打不中它,把它忽略掉。当然这只是理论缺陷,实际应用 中不会困扰到我们。

灯光缓冲的主要参数有七个:

细分:如同前文确定性蒙特卡罗细分,发光贴图的半球细分一样,样本细分数即是参数的平方,1000即代表1000X1000个样本从相机射出。通常测试渲染设置200-300,正图渲染1000-1200。

尺度,取样大小这两个参数是一起调节的,尺度有两个选项:屏幕尺度或世界尺度,屏幕尺度用于静帧表现图,世界尺度用于漫游动画,一般我们不动这两个选项,如真的想提高参数,请把取样大小设为0.01,计算量会精细4倍,时间也会变成4倍。

线 程数量,这个参数由你的cpu决定,如果是双核处理器,就设置成2,如果是双核超线程处理器就设置4,如果是现在比较热门的i7处理器,高达4核8线程, 每个核心都是两个线程,所以就设置成8。如果你不知道自己的计算机是几核几线程,简单来说这个数字和你渲染时跑来跑去的小方块数量是一致的。下图就是8线 程渲染,8个小方块,很高效。

储存直接光,这个参数很有意思,要知道其实灯光缓冲引擎是可以作为首次引擎进行渲染的,如果把首次引擎和二次引擎都设置成灯光缓冲,并且取消储存直接光的勾选,则可以得到一个还不错的渲染结果:

该渲染方式非常快速,这张800X600的汽车模型图片在我的两线程笔记本电脑上耗时仅29秒,但缺陷是远处的地面不够平整,阴影里也有斑点。

 

如果勾选储存直接光,会生成这样的结果:

可以看到阴影全部变得乱糟糟的,这个参数意义何在呢?

这个参数在实际应用中是很有用处的,可以节省光采样的时间,在实际应用中,如果不是特别受内存限制的话,我们一般会采用发光贴图作为首次引擎,灯光缓冲作为二次引擎,在计算时,V-ray会先计算二次反弹,即灯光缓冲,就是这样的画面,像点阵一样:

灯光缓冲建立完后,会进行发光贴图的计算。

我 们可以注意到,在建立灯光缓冲时,已经采集了大量的光样本,而发光贴图仍然要再次重新采集一遍,如果勾选了储存直接光照,就会把灯光缓冲里采集到的直接光 照信息直接转交给首次引擎——发光贴图去使用,避免了数据的重复计算。这样一来,在计算发光贴图时,速度会大幅增加。如上的这个模型,图幅 1280X960,发光贴图参数-3,0,灯光缓冲800,勾选储存直接光照,光采样用时1分30秒,不勾选储存直接光照,光采样用时1分51秒,这增加 的20秒便是重复计算的时间。这个选项勾选与否,对于光采样这个阶段大约会影响20%左右的时间。勾选后,速度快了,但会在一些细节角落出现瑕疵,一般来 说是可以接受的。

最后是显示计算阶段和自适应,勾选自适应后,灯光缓冲会根据空间,细节对采样进行一定的取舍,而不是将其视为2d图像,勾选与否差别不是太大,因为毕竟是二次反弹,效果比较细微。

以上,间接照明采样器讲解完毕。

 

图像采样器

我建议所有坚持读到这里的同学,往回找到“七”这个章节,读一下第七节的第一段话,这个章节太长了,回想一下图像采样器和间接照明采样器的关系是很重要的。

 

图 像采样器,不严格地说又叫抗锯齿采样器,它的作用,是根据模型信息和之前所采集的光照信息,绘制出纹理清晰,表面平滑,边缘平滑的图像,它的参数平衡着渲 染的时间与质量,合理的参数可以帮助你在满意的出图质量下节省时间。仅仅调节它的参数,就可以让你得到一个20秒左右的测试渲染图,或是一个30分钟的正 图。

 

关于图像采样器,推荐大家去VeryCD搜索如下关键词:speed vs quality,会搜索到关于图像采样器的教程,甚至有中文翻译版,非常透彻。这里我只从专业应用的角度,针对建筑系同学讲一点参数上的东西。

图像采样器由两部分组成:第一部分叫图像采样器,第二部分叫抗锯齿过滤器。

图像采样器决定了抗锯齿样本的采集方式,抗锯齿过滤器决定了处理这些样本的计算方式。

 

 

抗锯齿专题

为什么要抗锯齿?

当 需要在数字媒介上表现自然界物体的时候,需要抗锯齿。换个形象点的说法,假设你要在一个网格上表现一条曲线,问题就会出现了,为了表现这条曲线,如果网格 上的每个点要么被填满,表明曲线的存在,要么是空白,表示曲线没有通过这个格子,不允许有部分被填满的格子(因为每个格子已经是最小单位了),那显然这条 线不是“曲”的,整条线会像贪吃蛇一样,是由一个个方块拼凑的。为了使计算机屏幕上所显示的曲线是平滑的,抗锯齿算法引入了灰色的格子,根据曲线在这个格 子中存在的权重,决定这个格子是倾向黑还是倾向白。这样一来,从足够远的地方看,或格子足够小的话,我们就会在数字媒介上,看到平滑的曲线。 Windows最经典的画图软件没有抗锯齿的功能,它所绘制的曲线边缘是锯齿状的,大家可以自己看一下。而photoshop在4.0版本以后引入了抗锯 齿算法(请注意是4.0而不是CS4)。

在PS中,圆形的边缘是有灰阶的,在100%视图下,看起来是平滑的边缘。

甚至,抗 锯齿不仅仅表现在边缘,还表现在表面,比如在现实世界中一盏灯在一个单色表面造成的退晕效果,绘画中一笔由浓到淡的笔触,都应当是连续的,而在数字媒介中 表达的时候,则必须用特定的颜色值去赋予表面的每一个点,数值不可能是连续的,但是足够细致的颜色色阶细分数可以模拟连续的色彩,这就是为什么显示器设定 有8位色(2的8次方,256色),16位色(65536色),24位色(达到人眼分辨极限),32位色。

 

在vray渲染中,根据之前所得到的光采样数据,在图像采样器中进行抗锯齿采样,并通过抗锯齿过滤器的算法表达出来,这就是图像采样器的工作流程了,抗锯齿采样越精细,边缘就越平滑,表面也越平整,颜色过渡也越自然,噪点和瑕疵就越少。当然时间也就越长了。

 

下面来看第一个图像采样器,固定比率:

固 定比率只需要调整一个值,就是它的细分,默认细分为1,1的意思是说,vray在确定图面的每一个像素的颜色时,会参考1个样本。此时的出图质量会非常 差,瑕疵,锯齿都会非常明显,曲线边缘的效果和windows画图一样,没有抗锯齿计算(因为没有更多参考数据),但是由于几乎没有进行采样计算,所以出 图会非常非常的快,并且,此时场景的光感是与正图无异的,因此,在调整灯光的时候,它就是标准的测试参数了。如果调高参数的话,比如调为4,就意味着每绘 制一个像素,要参考这个像素周围4的平方个样本,也就是16个样本,此时你会开始看到物体边缘的平滑效果,此时勾选下面的抗锯齿过滤器,调整不同的计算公 式,将会看到不同的抗锯齿效果,想达到正图参数的话,一般要设置细分为16。此时每一个像素的颜色都会被256个样本共同决定,这就是固定比率的意思: “每一个像素的样本比率是固定的,每个点都一样的精度”。 用这个采样器出正图会非常非常慢,因为计算量过大了。

这个采样器一般就用来测试渲染,细分1即可。

到这里大家可能会想到,没必要每个点都采这么多样本啊,和光采样一样,更多的采样只集中在细节,对于平整的表面进行更少的采样,多好呢。

后面的两个图像采样器都有一定的自适应性,它们会根据像素的重要程度来安排不同的采样精度,达到高效的样本采集。

这是自适应DMC采样器:

这里就通过最小细分和最大细分来给采样器设定一个精度范围,噪波阈值控制噪点之间的色阶差,这个色阶差越小,颜色的过度就越平滑,关于噪波阈值我想用一个不太精确的图来说明:

噪波阈值限制了图面的每两个像素之间最大的色阶差,这个值越大,两个点之间的色差就越大,值越小,点与点之间颜色的过渡就越平滑。一般来说,正图的噪波阈值在0.01-0.005左右,但是这样的话会计算得很慢。

 

所以噪波阈值决定了图面的精致标准,即“我希望图面有多精细”(请注意这只是一个希望)

但是最大细分则决定了封顶的精度,即“我实际上最多能有多精细”。

那么在出图的时候,有两种情况:

  1. 噪波阈值设得很小(高质量参数)比如,0.001,但是最大细分只有4,那么即使是在最细节的部分,最多也就计算到4的精度就停止了,0.001形同虚设而已,这么少的样本根本达不到这么精细的目标。图面会比较粗糙,计算时间也会比较短。
  2. 最大细分很高了,比如16,但噪波阈值只有0.1,最后的结果估计和最大细分4差不了太多,因为两个相邻像素点的色差一达到0.1,用户就满意了,计算停止,更高的采样根本形同虚设。

总之就是这两个参数都控制计算的停止,要么达到噪波阈值,要么达到最大细分。所以给出一套合理的经验值就比较重要了。事实上默认参数最小细分1,最大细分16,噪波阈值0.01,已经是正图参数了,如果你想设定的更高,请使用最大细分24,噪波阈值0.005。

 

另 外说到它的自适应性,在vray中,在计算一个像素时先判断其重要性,距离镜头越远的像素,和越暗地方的像素,重要性越低,在计算时就会越趋于采用最小细 分,离镜头越近,越明亮的地方的像素,就越接近最大细分,通常来讲使用这种自适应的计算方式,与固定比率相比,达到同样的效果,时间能节省一半或更多(因 场景而异)。

 

这个自适应DMC采样器非常适合场景材质光影复杂,模糊效果多的场景(因为在vray中所有的模糊效果都是由DMC引擎产生的,所以它在处理模糊数据时非常高效)。

 

下面来看第三个图像采样器:自适应细分

这 个采样器的思路不同于之前的两个,它是唯一一个允许不足采样的图像采样器,这种采样方式在处理细节少,表面平整的场景时有极大的效率优势,它的绘图方式 是,通过对图面的自适应性采样,在模型的边界,缝隙,转角,贴图处使用过采样(over sampling),在平整光滑的表面,使用不足采样(under sampling)。可以看到它的参数由比率控制,比率不同于细分,它是一个以4为底的指数,最小比率-1的意思就是,在平面处,使用4的-1次方的采样 精度,等于1/4,也就是4个像素共用一个样本,在细节处使用最大比率2,也就是4的2次方,每个像素16个样本。它的特点是在不足采样的地方,必须使用 插补计算的方法编造出连续的色彩数据,优点是平面颜色过渡会非常完美,但是同时就有可能失去细节,比如我渲染一张网格,如果最大和最小比率全部都是-1的 话,结果就像下面这样,可以看到较远的地方的直线全部变成虚线的感觉了,这是因为采样时并没有采到那个位置,那个位置本来有线的,但是在绘制的时候根据周 围的面,就编造了那个地方是面。

这时候把最大比率调回2,就可以得到很不错的结果:

通常来讲,这个采样器使用默认值:最小比率-1,最大比率2,就可以认为是正图参数了,更进一步的话,可以采用0,3的组合。

这个采样器倾向于把表面“抹平”,它适于有大量平整表面的模型,贴图也不要很多,否则就没有效率了。它是渲染体块分析图的利器,速度快,表面会非常平滑,颜色过渡也会很完美。

 

最后说一下抗锯齿过滤器,一般出正图时都会使用Catmull Rom,在大多数情况下,它会获得最清晰锐利的边缘,但是当场景中有明亮的自发光材质,毛发,或密集网格时,很容易造成这些细节的边缘过于夸张而走样。

Area算法大小可以在1.5-0.5之间调整,数值越大越平滑,越小越锐利。

以下三个的说明从网络摘抄:

Box(方形)类型的过滤是在过滤区域内使用均等的权重把采样叠加在一起,在这些过滤方法中,Box是最快的,它的数值最好设置为1.0。

Triangle(三角)类型的过滤使用了线性的曲线来影响像素,这样在采样区的边沿很少会发生过滤现象。Triangle过滤的数值最好设置为2.0。

Lanczos类型的过滤使用了窄钟状曲线,这种曲线可以在采样区域的边沿产生负值,它的数值最好设置为4.0。

 

总之,正图时别忘了开这个抗锯齿。测试时开不开对速度影响不大。

 

八,专题:渲小图,出大图

渲小图出大图是在制作建筑表现图时非常常用手法,因为建筑表现图通常需要较大的分辨率,但是其实对于材质以及光影并不需要达到逼真的级别,对很多建筑人来说,图大而清晰就行了。

而且在建筑出图的时候,往往要渲染4000甚至6000分辨率的图,这样的一张图,在前期进行光采样时,一定会花费非常非常多的时间(对于笔记本电脑来说可能是好几个小时),内存也不一定够用。

 

渲小图出大图的思路就是,把光采样和图像采样的过程分离,用一张小图采集的光数据,提供给大图进行图像采样。

 

操作步骤如下,首先打开全局开关:

勾选不渲染最终图像,这样一来,点击渲染之后,只会计算光照数据而不会进行图像抗锯齿采样。

然后在输出面板中选择光采样的图幅大小,原则是边长大约在正图的三分之一到四分之一左右,长宽比与正图一致。比如我要出4000X3000的正图,那么光采样图幅就大约1600X1200,1200X900也可以。

然后设置间接照明引擎,必须是发光贴图+灯光缓冲的组合,发光贴图设置正图参数:最小比率-3,最大比率0,半球细分50,插补样本35(室内的话请相应提高)。

灯光缓冲细分800-1000,有需要的话请把取样大小改为0.01。

点击渲染,vray会开始计算光样本。当计算完毕后,打开发光贴图卷展栏,拖动右边的滑条往下看:

点击保存,选择一个英文路径,并起一个英文文件名,这时会有一个后缀为vrmap的文件被保存,这个文件就是发光贴图数据。我一般会存在D盘根目录下,并且以数字或拼音命名。

 

同样的进入灯光缓冲卷展栏,向下拖动,点击保存

也存在英文路径下,起一个英文名,这时会生成一个后缀为vrlmap的文件,这个文件就是灯光缓冲的数据。

 

光数据采集完并保存好了,我们就可以出正图了。

 

首先,取消不渲染最终图像的勾选。

在输出中设置正图的长宽:

设置图像采样器为正图参数:

或者:

然后我们要使vray不再重新计算该分辨率下的光照(400X3000),而是直接调用1600X1200的光照文件。

打开发光贴图卷展栏,往下拖动

数据模式由“单帧”(Single Frame)改成“从文件”(From File),点击浏览(Browse),选择刚才保存的发光贴图数据(*.vrmap)

 

同样打开灯光缓冲卷展栏,往下拖动

数据模式同样由“单帧”(Single Frame)改成“从文件”(From File),点击浏览(Browse),选择刚才保存的灯光缓冲数据(*.vrlmap)。

 

至此,设置完毕,点击渲染会看到vray直接跳过光采样过程开始出正图。使用本方法,光影会在细腻程度上有一些损失,但是图面的清晰程度非常高,非常节省渲染时间。

 

九,颜色映射

颜 色映射其实就是曝光,简单说两句,使用线性曝光(linear),图面明暗反差会非常强烈,光感会很强,但是容易过曝或死黑,与之相对的是指数曝光 (exponential),它会最大限度的保留细节的范围,但是图面会比较灰,明暗对比不强,需要后期调整对比度。一般使用莱因哈德 (reinhard),倍增值1,混合值(burn value)0.8。可以折中这两种曝光算法。

 

好了,本篇《由vray for sketchup参数面板说开去》基本上就算完成了,遗留下DMC采样器,通道,焦散和置换没有讲,这几个东西我弄的不是很明白,大家有问题就留言讨论吧。

关于DMC采样器,火星时代有篇不错的讲解,有兴趣的同学请移步http://www.hxsd.com/tutorial/xuanranzhuanlan/V_Ray/20090908/21725.html

 

感谢所有同学在这三个月以来的支持。

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s